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Multispecies stock assessment models require predator diet data, e.g. stomach samples. Diet data can be unavailable, sparse, of small sample
size, or very noisy. It is unclear if multispecies interactions can be estimated without bias when interactions are weak. Research is needed
about how model performance is affected by the availability or quality of diet data and by the method for fitting it. We developed seven age-
structured operating models that simulate trophic interactions for two fish species and different scenarios of diet data availability or quality.
The simulated data sets were fitted using four statistical catch-at-age models that estimated fishing, predation and residual natural mortality
and differed in the way the diet data was fitted. Fitting the models to diet data averaged over time should be avoided since it resulted in esti-
mation bias. Fitting annual diet composition per stomach produced bias estimates due to the occurrence of zeros in the observed proportions
and the statistical assumptions for the diet model. Fitting to annual stomach proportions averaged across stomachs led to unbiased results
even if the number of stomachs was small, the interactions were weak or some sampled years and ages were missing. These methods should
be preferred when fitting multispecies models.

Keywords: ecosystem-based fisheries management, multispecies stock assessment, predator diet, simulation testing, statistical catch-at-age
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Introduction
There is an increasing incentive to develop ecosystem-based man-

agement approaches. While ecosystem-based management can

take several forms, when the interest is on mixed fisheries with

trophic interactions between the fish species, the term ecosystem-

based fisheries management (EBFM) is often used (Dolan et al.,

2016). EBFM provides an integrated approach to ecosystem man-

agement (Link, 2010) and is strongly supported by numerous in-

ternational agencies (FAO, 2003; NOAA, 2016). Multispecies

models are becoming important tools for operationalizing EBFM

approaches (Plagányi, 2007). These models estimate population

dynamics while accounting for trophic interactions and are there-

fore a more realistic representation of the structure of the ecosys-

tem than models where these dynamics are implicit.

Different levels of complexity exist in multispecies modelling.

Whole ecosystem models, such as Atlantis (Fulton et al., 2004) or

Ecopath with Ecosim (Christensen and Walters, 2004), are simu-

lation models and predation is only informed empirically using

diet data or the literature. These models are useful to understand

certain functionality of the ecosystem or to test management
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scenarios (Fulton et al., 2014; Grüss et al., 2016; Weijerman et al.,

2016). However, simulation models are not fully adequate for sup-

porting tactical management advice since values of mortality rates

and fish dynamics are necessary and model parameters should be es-

timated from empirical data. In this case, multispecies stock assess-

ment models are more relevant. These assessment models are usually

of moderate complexity and only focus on the components of the

ecosystem which are biologically or economically relevant for

addressing management questions (Plagányi et al., 2014).

Development of these multispecies assessment models has increased

with the popularity of EBFM and range from simple deterministic

Multispecies Virtual Population Analysis (MSVPA) models

(Helgason and Gislason, 1979; Tsou and Collie, 2001) to more com-

plex statistical catch-at-age models (Lewy and Vinther, 2004; Jurado-

Molina et al., 2005; Kinzey and Punt, 2009; Curti et al., 2013).

Despite increased realism, multispecies assessment models

have disadvantages compared to single species models. They are

mathematically more complex and therefore model development

and estimation is time consuming, and model validation can be

challenging. By increasing the model complexity, there is also the

concern of over-fitting which is important if the model is used

for management predictions (Hawkins, 2004). Principally, one

main problem that arises with multispecies models is the require-

ment for predator diet data to parameterize and inform trophic

interactions among species. Diet data usually come from stomach

content sampling during fishery independent surveys. However,

the intensity of sampling within and between years can vary over

time due to priority of other data collections or shifts in scientific

objectives. Reduced sampling or inherently large variability

among stomach observations at a given time point will presum-

ably weaken statistical inferences for predation model parameters.

Diet data may also be uninformative due to weak trophic interac-

tions, possibly biasing parameter estimation. Model assumptions

may also be important in terms of how best to fit diet data and

how the observed diet data and corresponding predictions should

be aggregated. Sparse diet data may be responsible for estimation

bias in multispecies assessment models (Van Kirk et al., 2015),

but it is unclear how aggregating these sparse data over time

affects multispecies assessment model performance when com-

pared to fitting to sparser, potentially noisier data that are closer

to the original observations (Deroba, 2018).

Here, we investigate how quality and availability of diet data as

well as diet model assumptions affect the performance of multi-

species age-structured assessment models. A set of multispecies

age-structured population models were developed and used as

operating models to simulate data for different multispecies sta-

tistical catch-at-age models, with the aim of determining robust-

ness of methods for aggregating diet data, and how use of diet

data with different levels of information affects model perfor-

mance. Our simulation study is applied to a model of two fish

species with trophic interactions. The statistical catch-at-age

models we created provide new insights on the performance of

multispecies assessment models that are useful for providing tac-

tical advice under EBFM approaches.

Methods
The simulation study comprised seven operating models (OMs)

and four estimation models (EMs). The OMs are identical in all

aspects except for how predator diet data are simulated. The EMs

are all multispecies statistical catch-at-age models that differ in

how the diet data inform the model. The multispecies models

were developed using the R package (R Core Team, 2018)

Template Model Builder (TMB) (Kristensen et al., 2016).

Operating models
Model structure
We developed a general multispecies age-structured population

model that also accounted for fishing. The model was closely re-

lated to MSVPA concepts (Andersen and Ursin, 1977; Helgason

and Gislason, 1979). Annual total mortality (Z) comprised of com-

ponents due to fishing (F), predation (P), and other sources of

natural mortality (M) was parameterized as instantaneous rate:

Zt ;ai ¼ Ft ;a;i þMt ;a;i þ Pt ;a;i : (1)

Predation mortality at time t for prey species i of age a was:

Pt ;a;i ¼
XJ

j¼1

XBj

b¼1

CRb;jNt ;b;j
#t ;a;i;b;jPI

i¼1

PAi

a¼1

/t ;a;i;b;j þ /othert ;b;j

0
B@

1
CA; (2)

where Nt ;b;j is the abundance of predator species j of age b at time

t . J is the total number of predator species and B is the maximum

age of the predator (age plus group). We approximated annual

predation using the abundance expected at the beginning of each

annual time step. The per-capita consumption rate of a predator

(CR) corresponded to the annual amount of all prey consumed

by the predator. The biomass of prey i available to predator j (/)

was the product of prey suitability to the predator (#) and bio-

mass of the prey (product of prey numbers N and weight w):

/t ;a;i;b;j ¼ #t ;a;i;b;jNt ;a;iwt ;a;i: (3)

This corresponds to a type II functional response (Holling,

1959). Following MSVPA concepts, the suitability depends on a

prey-specific component, the vulnerability (q) of a prey to a pred-

ator and on a size-specific component, the predator size prefer-

ence (g), which are assumed independent:

#t ;a;i;b;j ¼ qi;j gt ;a;i;b;j : (4)

We assumed the preference of a given size was a scaled

Gamma function between 0 and 1 of the log ratio of masses of

predator and prey:

gt ;a;i;b;j ¼
Xt ;a;i;b;j

ðaj � 1Þbj

 !aj�1

e
�

Xt ;a;i;b;j�ðaj�1Þbj

bj

� �
; (5)

where aj and bj are shape and scale parameters, respectively, and

Xt ;a;i;b;j ¼ log wt ;b;j=wt ;a;i

� �
.

The function equals 1 at its maximum when Xt,a,i,b,j¼ (aj�1)bj.

In the model, a predator cannot eat a prey of the same weight

or bigger so g ¼ 0 in these cases. We assumed that biomass of

food other than the modelled species was always of preferred size

such that size preference for other food was 1. As a result, suit-

ability of other food only depended on its vulnerability and the

available biomass of other food (/other) was:

/othert ;b;j
¼ qotherj

BIOMotherj
; (6)

where the biomass of other food (BIOMother) was assumed to be

a known constant.
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Vulnerability varies with biological and physical constraints

such as habitat overlap, prey, and predator behaviors or depth

(Gislason and Helgason, 1985). Vulnerability was scaled so that,

for a specific predator, it summed to 1 over prey species including

other food. The vulnerability for other food was as follows, where

I was the total number of modelled prey:

qotherj
¼ 1�

XI

i¼1

qi;j : (7)

There was an initial abundance at age for each species and annual

recruitment at age 1 produced new cohorts [Table 1, Equation

(T1.1)]. The expected catch of a given species followed the Baranov

equation [Equation (T1.2)] and the instantaneous fishing mortality

rate at age [Equation (T1.3)] followed a logistic curve [Equation

(T1.4)]. Lower fishing pressure on smaller individuals is typical for

fish populations that are caught by trawl gear (Millar and Fryer,

1999). Expected values for abundance indices were a function of fish

abundance [Equation (T1.5)] and survey catchability [Equation

(T1.6)]. Abundance indices were also assumed to be generated from

samples collected by a trawl survey so smaller fish were assumed less

likely to be caught in the sampling gear than larger individuals

[Equation (T1.7)]. Annual spawning stock biomass (SSB) repre-

sented the biomass of mature fish [Equation (T1.8)].

Data simulation
Input settings: The OMs were configured to simulate annual

observations over a 42-year period for two species, modelled with

many characteristics of the Georges Bank Atlantic cod (Gadus

morhua) and Northwest Atlantic herring (Clupea harengus) pop-

ulations. The majority of the data streams was simulated giving

arbitrary values to the model parameters and inputs. Few inputs

to current single species stock assessments and diet data were

also used for the stocks to resemble cod and herring. These are

described below and the data used corresponded to the years

1973–2014.

The models used the annual weight-at-age, the month of

spawning and the proportion of mature fish at age from the

Georges Bank Atlantic cod and Atlantic herring stock assessments

(Deroba, 2015; Northeast Fisheries Science Center, 2015). In the

multispecies models, cod is the only predator and eats cod, her-

ring, and other food. Age classes for both species in the models

ranged from 1 to 9 and all older fish were also modelled in pooled

age class (10þ). Stomach content data from the Northeast

Fisheries Science Center (Smith and Link, 2010) were also used to

empirically estimate cod per-capita CR and the cod size prefer-

ence parameters a and b, which were all then assumed fixed and

known in the EMs (i.e. the values in the EMs matched the

“correct” values in the OMs). The methods used to obtain these

values are detailed in Supplementary Material S1.

To simulate the data necessary for the EMs, values were chosen

for the parameters of the OMs so that the predator–prey interac-

tions were strong for the modelled species and population col-

lapse over the modelled time series was avoided. Simulation

values for the model parameters and inputs are given in

Supplementary Material S2. Cod and herring residual natural

mortality rates in the OMs were fixed at 0.2 and 0.35 respectively

for all ages and years.

Observation error structure: Given assumed parameter and in-

put values, 1000 sets of stochastic observations were generated T
ab
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from each OM. The simulated data sets included aggregated catch

and abundance indices, age composition data for catch and abun-

dance indices, and predator diet data. Observations were simu-

lated assuming log aggregated catch [Table 2, Equation (T2.1)]

and log aggregated survey indices [Equation (T2.2)] were nor-

mally distributed with given variance, as is the common practice

in Northwest Atlantic stock assessments (Deroba, 2015;

Northeast Fisheries Science Center, 2015). Similarly, catch and

survey age compositions were assumed to be multinomial distrib-

uted [Equations (T2.3) and (T2.4)]. Predator diet observations

(stom) consisted of the proportions of each prey species by

weight in a predator stomach. We assumed these proportions fol-

lowed a Dirichlet distribution [Equation (T2.5)].

OM scenarios: Seven OMs were considered with alternative

assumptions for the amount of predator diet data, its observation

error variance and the intensity of predation on the prey species

(Table 3). These OMs were chosen to cover typical problems and

possible source of bias that can be encountered when working

with diet data. We did not investigate the effect of different levels

of noise in observed catch and survey indices or in biological pro-

cesses on model performance.

OM1 represented an “ideal” situation where the number of

samples was large (500 stomachs per year) and the predator–prey

interactions were strong such that the modelled prey represented

on average 40% of the predator diet and around 50% for older

predator age groups. OM1 was used as a base case and other OMs

were created by varying from this base case.

The importance of the number of diet samples was evaluated

by using only 50 (the first 10%) of the stomachs for OM2.

The effect of variability in the diet data was evaluated by de-

creasing the Dirichlet parameter (j) to generate diet data with

more observation error (larger variance, OM3).

Assuming the proportion of prey by mass in a predator stom-

ach is equivalent to the proportion of prey biomass available in

the ecosystem [Equation (T2.5)] meant that, with everything held

constant, an increase in the biomass of other food available would

increase the biomass of other food eaten by the predator. The ef-

fect of the strength of the predator–prey interactions on estima-

tion was assessed with OM4 where predator–prey interactions

were reduced by increasing the biomass of other food available

such that it represented around 80% of the predator stomach

contents for all simulated data sets.

Table 2. Distributions used for each data type in the multispecies models.

Number Name Equation Comments

T2.1 Observed aggregated catch in
weight log Ct;ið ÞjNt;a;i � N log

PAi

a¼1
Ĉ t;a;iwt;a;i

 !
;r2

Ct;i

 !
r2

C is the observation variance

T2.2 Observed aggregated survey indices log It;i;kð ÞjNt;a;i � N log
PAi

a¼1
Î t;a;i;k

 !
;r2

It;i;k

 !
r2

I is the observation variance

T2.3 Observed age composition in catch log Ct;a;iPAi

a¼1

Ct;a;i

 !
jNt;a;i � Multinom log Ĉ t;a;iPAi

a¼1

Ĉ t;a;i

0
@

1
A

0
@

1
A Multinomial distribution

T2.4 Observed age composition in survey
indices

log It;a;i;kPAi

a¼1

It;a;i;k

 !
jNt;a;i � Multinom log Î t;a;i;kPAi

a¼1

Î t;a;i;k

0
@

1
A

0
@

1
A Multinomial distribution

T2.5 Observed prey proportions by
weight in the diet of the
predator

PAn

a¼1

ft ;a;n;b;j

fothert ;b;j
þ
PI

i¼1

PAi

a¼1

ft ;a;i;b;j

� Dirichlet stoms;t;n;b;jPIþ1

n¼1

stoms;t;n;b;j

; jj

 !
n is the index for prey including

other food. s represents a specific
stomach. jj is a parameter for
each predator j.

Table 3. Description of the different operating (OM) and estimation (EM) models.

Name Description

Operating models
OM1 The diet data consist of 500 stomachs per year
OM2 The diet data consist of 50 stomachs per year such that sample size is reduced by 90%
OM3 The diet data consist of 500 stomachs per year and the variance in the data is increased
OM4 The diet data consist of 500 stomachs per year and the strength of predator–prey interactions is weakened such that modelled

prey species only represented maximum 20% of the predator diet
OM5 Diet data are unavailable for the first half of the times series and consist of 500 stomachs per year when they are available
OM6 Diet data are unavailable for predators of ages 1–4 and consist of 500 stomachs per year when they are available
OM7 Diet data are unavailable for predators of ages 7 to 10þ and consist of 500 stomachs per year when they are available
Estimation models
EM1 The diet data are fitted per stomach every year
EM2 The diet data are fitted every year to the mean stomach content taken over the stomach of a predator of age a
EM3 The diet data are fitted to the 10 years aggregated mean content taken over the stomach of a predator of age a
EM4 The diet data are fitted to the entire time series aggregated mean content taken over the stomach of a predator of age a
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Often, diet data are not available for the entire time series.

There exist numerous ways data availability could be tested. For

simplicity, in OM5, we assumed that diet data were not available

for the first half of the modelled time series, but predation was

still modelled over the entire model time frame. Since the preda-

tion parameters are not year-dependent in the model, it may still

be possible to estimate them despite stomach data unavailability.

This scenario tests if missing diet data in some years would affect

model estimation. This model would for example corresponds to

an ecosystem where surveys for stomach content collections were

implemented only from the middle of the time series.

Finally, OM6 and OM7 tested the consequences of missing

samples for certain predator age classes which is typical during re-

search surveys. For simplicity, OM6 assumed young predators

(ages 1–4) were not sampled over the entire time series and OM7

assumed older predators (ages 7 to 10þ) were not sampled.

Estimation models
Parameter estimation
The statistical catch-at-age models shared the same model struc-

ture as the OMs. Predicted total catch, total survey abundance in-

dices, age compositions for catch and indices and proportions of

prey in the predator diet were fitted to annual observations

obtained from the OMs assuming the statistical distributions

used to simulate the observation data [Equations (T2.1)–(T2.5)].

Estimated model parameters included fishing parameters (fully

selected annual fishing mortality ft and parameters governing se-

lectivity at age cF and A50F ), survey abundance index parameters

(survey catchability q and selectivity at age parameters, csurv and

A50surv), the abundance at age in the first year (N1;a), annual re-

cruitment at age 1 (Nt ; 1), the predation parameters (general vul-

nerability q and Dirichlet distribution parameter j) and residual

natural mortality per prey species (Mi). M being constant across

ages and years in the OMs, only one value of M is estimated by

prey species in the EMs. This gave a total of 201 parameters

(Supplementary Material S2).

EM scenarios
Four EMs were fitted to the 7 OMs (Table 3). EM1 represented

the same configuration as the OMs. Each diet observation (stom-

ach) was fitted using Equation (T2.5).

EM2 was a simplification where diet observations were aver-

aged over stomachs for predators of a specific age, resulting in

only one data point per predator age and year [s ¼ 1 in Equation

(T2.5)]. Individual predator diet observations are rarely fitted to

in multispecies models applied to fish populations, often due to

the limited number of diet observations available.

In EM3, the model was simplified further by averaging diet

observations and corresponding predictions for each predator age

over 10-year intervals. Aggregating diet over time is sometimes

used when the number of annual samples is deemed insufficient.

In their studies, Van Kirk et al. (2010) and Curti et al. (2013) ag-

gregated the diet observations across a 7 year and 5 year period,

respectively. Sensitivity tests aggregating the diet over 5-year

intervals did not change the magnitude of the bias in this study.

Finally, EM4 predicted and fitted to the mean diet proportions

aggregated over the entire time series. Performance of models

EM3 and EM4 should provide insight on the effect of aggregating

the diet data over time.

Sensitivity analysis
The OM4 scenario produced unexpected results, which will be

presented later, that led to running an extra OM4–EM1 simula-

tion with reduced variance around the diet observations.

In the OMs, the annual fully selected fishing mortality (f ) was

kept constant which may seem unrealistic. The sensitivity of the

model to this assumption was assessed by running two scenarios.

In the first one, f varied randomly between 0.1 and 0.9. In the

second scenario, f presented an increasing trend from 0.1 to 0.9

for the first 19 years, then was constant at 0.9 for 5 years, then de-

creased for the remaining years to reach 0.1. EM1 and EM2 were

fitted to these two sensitivity scenarios.

The 7 OMs allow the effect of possible sources of bias in stom-

ach data to be investigated separately. In real ecosystems, these

sources of bias may happen jointly. As it is not possible to investi-

gate all possible OM combinations, we chose to run an additional

OM8 that combined OM3 and OM4 where the interactions were

weak and the stomach data had larger variance. This run is likely

a more realistic representation of ecosystems where many differ-

ent prey are consumed by predators and stomach data are noisy.

Finally, we ran the OM1 scenario estimating residual natural

mortality at age in the EMs to see if it was possible to estimate

consistent M at age values when no observed data are available to

inform them.

Performance metrics
Each of the four EMs was fitted to the 1000 data sets for each

OM. Performance of the EMs was calculated using the estimated

median relative difference (RD) as a measure of estimation bias:

RD ¼ ĥ
h
� 1; (8)

where the true value of the parameter or derived output was h
and the estimated values were ĥ. Here, we focused on model bias

as a measure of performance but we did not investigate perfor-

mance in terms of parameter uncertainty. For time and age-

varying parameters, the RD was estimated at each year and age.

The 95% confidence intervals of the median RD were also esti-

mated using the binomial distribution method of Thompson

(1936).

For conciseness, we focused on presenting the results for pa-

rameter estimates and outputs used in management of fish popu-

lations: SSB, recruitment, F , M ; and P. To enable comparison of

all EMs, the results were presented as boxplots of the median RD.

Age and (or) time-varying outputs were aggregated into one box-

plot, which did not represent the true variability of each annual

and age-specific estimate. However, these summaries sufficed to

convey underlying conclusions since the variability in bias was

generally small for each age and year. For comparison, the full

diagnostics presenting the median RD with 95% confidence inter-

vals disaggregated by year and age for all parameters and outputs

are given in Supplementary Material S3.

Results
In the base case (OM1), all EMs performed well with a bias of less

than 2% (Figure 1). Fishing, predation, and natural mortality

were well estimated. The 95% confidence intervals around the

median RD for M increased for EM3 and EM4 but the range was

still of only a few percent.
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When the number of stomachs is reduced by 90% (OM2), esti-

mation bias increased when the diet was aggregated over time

(EM3 and EM4, Figure 2). Maximum bias for EM3 ranged be-

tween 5 and 10% although this increased to almost 20% for

M when using EM4. Both EM3 and EM4 had difficulty estimating

cod recruitment in the final year (Supplementary Figure S4.1, see

also Supplementary Material S3). Reducing the number of stom-

achs by 90% in this manner did not affect estimation for EM1

and EM2.

Increasing the variance in the diet data (OM3) mainly affected

EM1, with a median bias for all outputs between 0.8 and 7%

(Figure 3). Estimates from EM1 were increasingly biased (2–77%)

when the interactions between cod and the modelled prey were

weak (OM4, Figure 4). Fitting EM4 to the OM4 data resulted in a

smaller but still large bias (1–37%) across all parameters and out-

puts, mainly for cod. The bias decreased (<2%) for the configu-

ration OM4–EM1 when the variance in the diet data was reduced

(Figure 5), highlighting that the bias may be due to diet propor-

tions being too often at the lower bound of the Dirichlet distribu-

tion (i.e. 0) since using averaged diet proportions (EM2) reduced

this problem (Figure 4).

Removing the first half of the diet data time series resulted in a

large bias in the EM4 cod fishing mortality of around 50% due to

estimated M approaching zero (Figure 6). The bias on cod F in-

creased with decreasing cod size or age with bias around 100% in

F at age 1 against around 38% at age 10þ (see p. 489 in

Supplementary Material S3). In contrast, EM1 and EM2 per-

formed well in this scenario, with EM3 having a larger bias

(around 5%) notably for herring recruitment and SSB

(Supplementary Figure S4.3).

Missing stomach samples for young (OM6, Figure 7) or old (OM7,

Figure 8) cod did not affect the performance of the EMs much.

The bias in model estimates was overall smaller than 4% but increased

for cod recruitment in the final years of the times series for EM4 (out-

liers in Figure 8, see also p. 687 in Supplementary Material S3).

The effect of data availability and quality on the performance

of the models is best evaluated by comparing results across OMs

for each EM. For easy comparison, the RDs for the EMs fitted to

all OMs were plotted in Supplementary Figures S4.4–S4.7. While

looking at the bias for EM1, EM3, and EM4 it seems that diet

data could play a role in model performance since the bias varied

between OMs. However, for the EM2 the bias was below 3% for

all OMs, therefore, the diet data scenarios tested did not affect the

performance of the multispecies model when the diet data was fit-

ted with EM2.

The results of the sensitivity analysis around the assumption of

constant fully selected fishing mortality are given in

Supplementary Material S5 (part 1). The bias in EM1 and EM2

was below 2% in all cases showing that the models were robust to

the assumption of constant f .

Combining OM3 and OM4 increased the bias in all EMs

(Supplementary Material S5, part 2). The largest bias was for

EM1, similarly to what was observed in Figures 3 and 4, notably

for cod recruitment and herring predation mortality

(Supplementary Figure S5.5). The EM2–EM4 presented similar

bias with impossibility of estimating correct values of cod residual

natural mortality, which was estimated to be null while cod fish-

ing and predation mortality were overestimated by around 50%

(Supplementary Figure S5.6). However, the bias was reduced for

all EMs when the residual natural mortality was not estimated in

the EMs and fixed at the correct value (Supplementary Figure

S5.7). Only EM4 and EM5 presented some difficulty in estimating

recruitment for both species in the final years of the time series,

highlighted by the outliers in Supplementary Figure S5.7.

Figure 1. Median RDs for SSB, recruitment (R), fishing mortality (F), and predation mortality (P) for the fit to OM1, the base case scenario.
One value is estimated for residual natural mortality (M), so the median RD and its 95% confidence interval are presented for M.
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Figure 3. Median RDs for SSB, recruitment (R), fishing mortality (F), and predation mortality (P) for the fit to OM3, where the variance in
the diet data is increased compared to the base case. One value is estimated for residual natural mortality (M), so the median RD and its 95%
confidence interval are presented for M. The figure does not present the outlier around �0.55 for EM4 cod recruitment for comparison
purpose. The original figure can be found in Supplementary Figure S4.2.

Figure 2. Median RDs for SSB, recruitment (R), fishing mortality (F), and predation mortality (P) for the fit to OM2 when the diet data is
reduced to 50 stomachs (10% of original sample size). One value is estimated for residual natural mortality (M), so the median RD and its
95% confidence interval are presented for M. The figure does not present the outlier at �1 for EM3 and EM4 cod recruitment for comparison
purpose. The original figure can be found in Supplementary Figure S4.1.
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Estimating residual natural mortality at age induced an in-

crease in the bias for all EMs (Supplementary Material S5, part 3)

compared to Figure 1. The bias was overall above 20% for all out-

puts, except for predation mortality and for EM2 that performed

best compared to the others EMs. Residual natural mortality pre-

sented the largest boxplot highlighting the difficulty in estimating

it. For all EMs, M was overestimated and F was underestimated.

Discussion
For the OMs tested, it is clear that aggregating the diet data over

the entire time series should be avoided since it induces bias in

the estimation of multispecies models. EM4 performed only for

the base case and the OMs 6 and 7 where a lot of stomachs were

available every year and the interactions between prey and preda-

tor were large. For other OM scenarios, estimation bias was sub-

stantial for all parameters and derived outputs, sometimes of

more than 50%. Similar patterns were observed when the diet

data were aggregated every 10 years but to a smaller extent since

the bias was mostly below 10%. A problem arises when diet data

are not available every year or when the annual sample size is low.

In these cases, stomach content data are often averaged over time

(Tsou and Collie, 2001; Tyrrell et al., 2008) to reduce variations

due to observation errors and remove possible outliers. In this

study, we showed that using this method induced a bias to the

results while data availability and quality do not notably affect

model bias when the data are fitted every year (EM2). It is pre-

ferred to use noisy annual stomach data, to avoid precise but bi-

ased estimation of affected parameters. Reducing noise at the

expense of increasing bias is therefore a bad trade off. These con-

clusions differ from the study of Van Kirk et al. (2015) which

showed that uninformative diet affects multispecies model

Figure 4. Median RDs for SSB, recruitment (R), fishing mortality (F), and predation mortality (P) for the fit to OM4, where the predator–
prey interactions are reduced compared to the base case. One value is estimated for residual natural mortality (M), so the median RD and its
95% confidence interval are presented for M.

Figure 5. Median RDs for SSB, recruitment (R), fishing mortality (F),
and predation mortality (P) for EM1 fitted to OM4, where the predator–
prey interactions are reduced compared to the base case but where the
variance in the diet data has also been decreased to avoid zeros in diet
observations. One value is estimated for residual natural mortality (M), so
the median RD and its 95% confidence interval are presented for M.
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Figure 6. Median RDs for SSB, recruitment (R), fishing mortality (F), and predation mortality (P) for the fit to OM5, where the first 21 years
of diet data have been ignored. One value is estimated for residual natural mortality (M), so the median RD and its 95% confidence interval
are presented for M. A supplementary figure showing the results for EM1–EM3 only (for better comparison) is provided in Supplementary
Figure S4.3.

Figure 7. Median RDs for SSB, recruitment (R), fishing mortality (F), and predation mortality (P) for the fit to OM6, where the diet data for
cod of ages 1–4 is not available. One value is estimated for residual natural mortality (M), so the median RD and its 95% confidence interval
are presented for M.
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performance. However, the Van Kirk et al. (2015) paper aggre-

gated the diet data by 7-year intervals, which may induce bias

into the results (Deroba, 2018) since we demonstrated that the es-

timation bias increased when multiple model misspecifications

are made as shown in Supplementary Figures S4.4, S4.6, and S4.7

and when different sources of bias are combined Supplementary

Figures S5.5 and S5.6. Here we showed that EM2 performs well

even if the number of samples is small, the interactions are weak,

or some sampled years and ages are missing. While EM1 performs

well in most cases, bias can be introduced when the interactions

are weak or diet data is too noisy and EM2 performs better over-

all. This method (fitting to mean annual observations) should

therefore be preferred when fitting multispecies models.

Effective multispecies models should be guided by the preda-

tor–prey interactions for informing model dynamics (Link,

2002); a lack of information for some processes may lead to poor

model performance. However, small bias was observed for all

EMs when the diet data were unavailable for young or old preda-

tors (OM6 and OM7). Compared to common single species as-

sessment models, the EMs in this study estimated prey

vulnerability (q) and residual natural mortality (M) but the CR

and size preference parameters (a and b), that are informed by

predator diet data, were estimated empirically and fixed in the

EMs. Prey vulnerability is not age dependent in this study so

existing data allow estimation of accurate vulnerability and there-

fore predation for all ages despite missing observations for some

age classes. These results indicate accurate estimates of prey vul-

nerability together with known size preference parameters and

CR can likely be obtained, even if samples are only available for

some age classes. In systems where prey vulnerability may vary by

age due, for instance, to age dependent spatial overlap, missing

data on specific age classes may become a limitation and these

results may not be relevant.

Although model misspecification is a common source of bias

in simulation testing, we found that an incorrectly specified

model outperformed a correctly specified one. The EM1, which

has the same configuration as the OMs, gave more biased results

than the EM2 in some cases (OM3 and OM4). At first glance, this

result is unexpected since one would expect EM1 to perform best

since it matches the OMs. The difference for EM1 compared to

the other EMs is that the diet data is fitted per stomach instead

of the annual averaged stomach content per predator age. During

the simulation process, the predicted diet proportions in the

OMs are used to simulate observed stomach contents using the

Dirichlet distribution. Due to computing rounding limits, a very

small predicted diet proportion for a specific prey may result in

the absence of this prey in the observed simulated stomach in-

stead of a really small proportion. This means that when the sim-

ulated data are fitted, the EM may predict a very small but non-

zero proportion for an observed proportion that is null. Since the

Dirichlet cannot handle zeros in predictions or observations,

when a prey is absent in an observed stomach, this particular pro-

portion is not fitted and therefore does not enter the log-

likelihood calculation. In the OM3 and OM4, the increase in the

diet data variance or weakened predator–prey interactions

resulted in a large proportion of zeros in observations (given

more predictions in the OMs close to 0) while the predictions are

non-zero in the EMs. For these cases, there is an increased num-

ber of non-fitted predictions that should be fitted but are not be-

cause the corresponding observed proportion is null. This is

enough to cause a bias in the estimation process. The absence of

bias in the case of weak interactions but small diet data variance

Figure 8. Median RDs for SSB, recruitment (R), fishing mortality (F)s and predation mortality (P) for the fit to OM7, where the diet data for
cod of ages 7 to 10þ is not available. One value is estimated for residual natural mortality (M), so the median RD and its 95% confidence
interval are presented for M.

Performance of multispecies assessment models 1473

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/76/6/1464/5475848 by N
O

AA C
entral Library user on 19 July 2023

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz053#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz053#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz053#supplementary-data


(Figure 5), which reduced the number of positive close to zero

predictions for null observations, shows evidence that EM1 per-

forms well if this problem of zeros does not occur. Fitting the diet

data per stomach may therefore be problematic if the data con-

tains a large number of null observations. Using a Delta-Dirichlet

distribution which allows for zeros could solve this, but also

increases the number of parameters to estimate. Averaging the

stomach content data across stomachs every year, which removes

these zeros, may be an easier alternative. In our simulation, this

method showed unbiased results as well as faster optimizations.

The results for EM1 and EM2 may initially seem unrealistically

precise. In any case, we make no claim that these levels of bias

could be achieved in reality, rather we are concerned with investi-

gating relative changes in bias between the different scenarios

analysed here. The process and observation error variances used

to simulate data in the OMs were chosen so they are of the same

order of magnitude with what is usually used or estimated in

stock assessments; therefore, these results are not due to unrealis-

tically low levels of errors. Also, the figures presented here only

showed the distribution of median bias. The distributions in bias

with 95% confidence intervals, which were slightly larger, are pro-

vided in the Supplementary Material S3. Presenting the 95% con-

fidence interval around the median bias rather than the quartiles

around the bias distribution also reduced the perception of the

variation across the 1000 iterations. In the OMs, the simulated

mean observed stomach content varied annually (Supplementary

Figure S4.8) but maybe not at much as in reality (Deroba, 2018)

so the bias may be worse for more variable diets. Also, for sim-

plicity, predator size preference parameters and CR were esti-

mated empirically and assumed known and constant over time in

our study. As mentioned earlier, using known values for cod CR

and size preference parameters may help model precision since

only vulnerability and residual natural mortality need to be esti-

mated compared to single species assessments.

Predator CRs can be estimated following predator energetic

requirements (Essington et al., 2001) or as a function of predator

evacuation rate and daily ration (Durbin et al., 1983). Here, the

latter method was used and the resulting CR is highly dependent

on the assumed gastric evacuation parameters (Supplementary

Material S1). While it did not matter for this simulation study

that focuses on performance of multispecies models as a function

of diet data, it may be important to explore different values for

these parameters when the model is applied to a real ecosystem. A

sensitivity analysis around the parameters used to estimate the

gastric evacuation rate could be conducted (Tsou and Collie,

2001) but another option would be to estimate the predator CRs

within the assessment model. Size preference parameters (a and

b) could also be estimated within the model simultaneously using

observed data on predator mass and prey mass in the predator

stomach. It would be interesting to treat CR and size preference

as parameters that would be informed by diet data or by a prior

distribution. This approach would account for parameter uncer-

tainty within the model and also allow the possibility of simulat-

ing these parameters within the OMs. However, doing so will

increase the number of estimated parameters. In real ecosystems,

CR and size preference can vary within a year and stomach data is

rarely collected all months of the year. This study did not con-

sider the possible bias resulting from misestimating annual values

of consumption and selectivity, which may also be important.

The biomass of other food is an important assumption in mul-

tispecies models. Assuming this biomass constant is a standard

procedure but this is a potential source of bias since this can

greatly affect the model outputs and is also highly uncertain. This

limitation was not investigated in the models. The biomass of

other food was notably used in the model to vary the importance

of predator–prey interactions between the modelled prey. For

ecosystems where the biomass of other food is very large com-

pared to the biomass of modelled prey, a small change in the bio-

mass of other food will not affect the results (Curti et al., 2013)

but larger changes and uncertainties may have a significant effect.

The biomass of other food is difficult to estimate in real ecosys-

tems and more work should be spent in estimating possible prox-

ies for this value.

Fishing mortality was assumed constant over time but still esti-

mated annually. This assumption does not affect the bias in the

results as shown in Supplementary Figures S5.3 and S5.4, where

the fully selected fishing mortality (f ) varied annually in the OMs

(Supplementary Figures S5.1 and S5.2). The multispecies models

created managed to differentiate between variation in fishing and

predation mortality.

In this simulation study, we modelled two species, one preda-

tor and two prey, resulting in 201 estimated parameters. Model

performance may change if more fish species are considered in

the model since this would increase the number of estimated

parameters, although the amount of diet data would also be in-

creased. Also, residual natural mortality, while an estimated pa-

rameter, was assumed to be constant across ages and years. This

results in only one value of M estimated per prey species.

However, the estimation bias increased when M was estimated to

vary by age due to no additional observed data being available to

inform them. For EM2, the median bias was below 20%, which is

fairly good for a parameter not informed directly by the observa-

tions. However, we might expect bias to increase when sources of

bias are introduced to the diet data. In Supplementary Figure S5.

8 (OM8), even when M was estimated at age the true value was

constant across ages since we used the data sets simulated with

OM1. Bias may increase further if M was age and time-varying in

the OM. How informative the diet data need to be to allow esti-

mation of varying M is worth investigating in the future. State-

space approaches may offer a means to account for non-observed

mortality via process errors and may mitigate the problem of a

lack of data to inform M .

Finding the balance between model complexity and increasing

bias is one of the challenges for EBFM (Collie et al., 2016); multi-

species models of intermediate complexity, such as the one pre-

sented here, are found particularly relevant in this context

(Plagányi et al., 2014). Our multispecies assessment models can

successfully estimate mortality rates and correctly partition the

total mortality into fishing, predation, and residual natural mor-

tality from the data sets examined here. This provides evidence

that simple multispecies statistical catch-at-age models can be

augmented from single species statistical catch-at-age models

with minimal added complexity by fitting to diet data where they

are available. The real difficulty in practice is to obtain the diet

data needed to develop these types of models. Many ecosystems

suffer from lack of diet data. While stomach content data are col-

lected annually in the United States since 1973 (Smith and Link,

2010), in comparison, only 4 years of diet data are available in the

North Sea (ICES, 1997). The data simulated here may be more

exhaustive that what is currently available for certain ecosystems

and, when multiple sources of bias are introduced, the bias

increases. There is therefore a real need in obtaining stomach
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content data in the future to inform multispecies models and im-

prove EBFM. Fitting the annual stomach content (EM2) is robust

even when few stomachs are collected, predator ages are missing

or the interactions are weak. Also, EM2 provides good estimates

over the entire time series even when the first half of the time se-

ries is missing. The regular collection of diet data in the future

could therefore allow the estimation of past and present preda-

tion mortality.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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